公募研究: 2000年度、2002年度

遺伝性角膜変性症の原因遺伝子検索,SNP解析.角膜プロモーターに 関する研究

●山本 修士 ◆西田 幸二 ◆田野 保雄

逢坂大学院医学系研究科

研究の目的と進め方

ヒトゲノム解析計画の推進にともない,疾患原因遺 伝子の検索は、急速に進んでいる、大阪大学でも、ポジ ショナルクローニング法、および候補遺伝子アプロー チ法を駆使して,過去5年間の間に小口病(Nat Genet. 1997), ミースマン角膜上皮変性症(Am J Hum Genet. 1997), 格子状角膜変性症Ⅲ型(Am J Hum Genet, 1998), 膠樣滴状角膜変性症(Nat Genet. 1999), 斑状角膜変性症 (Nat Genet. 2000)の原因遺伝子を世界に先駆けて発見 することに成功した.しかしながら,原因不明の遺伝性 角膜変性症(円錐角膜,遺伝性角膜内皮変性症, map-dotfinger ジストロフィなど)が多数存在し、原因究明が待 ち望まれているのが現状である. 引き続き, これらの疾 患の原因遺伝子を解析し、将来の遺伝子治療に展開さ せる必要がある. 特にわれわれの発見した重篤な顆粒 状角膜変性症(ホモ接合体), 膠様滴状角膜変性症など は従来の角膜移植にかわる根治的治療法の開発が待ち 望まれている. 本研究では, 顆粒状角膜変性症, 格子状 角膜変性症の原因遺伝子であるケラトエピセリン遺伝 子を解析することにより、新しい SNP の発見と角膜特 異的発現を制御するプロモーターの開発を最終目標と する.

2001 年度の研究の当初計画

角膜変性症の原因遺伝子解析と角膜変性症 SNP 解析 を行う予定であった.

150 家系に及ぶケラトエピセリン遺伝子変異による 角膜変性症家系の解析を終了した. その結果, 同一の変 異をもつ患者間でも, 臨床病型に大きな差(視力, 発症 年齢) があることが明らかになった. ケラトエピセリン のR 1 24 H変異を有する患者は 80 家系にのぼる. この 中の軽症群(晩期発症, 視力良好群)と重症群(早期発症, 視力悪化群)の両者群間で, エクソン, イントロン領域, およびプロモーター領域の塩基配列を決定し, SNP(single nucleotide polymorphism)の同定を行う予定であっ た.

2001 年度の成果

同一の遺伝子変異(BIGH3 遺伝子の Arg124His)をもちながら、臨床病型の大きく異なる2つの家系が存在することを発見し、報告した(Am J Ophthalmol. 2001)。 また、BIGH3 遺伝子の Arg124His 変異をホモでもつ患 者は、ヘテロで変異をもつ角膜変性症患者に比べて、エキシマレーザー治療に抵抗性を示すことを発見し、報告した(Am J Ophthalmol. 2001). 格子状角膜変性Ⅲ型の解析中に新しい SNP を発見し、本邦特有のこの疾患は創始者効果によることを明らかにした.

国内外での成果の位置づけ

大阪大学の眼科外来には 250 家系を超える遺伝性角膜疾患患者が通院している. 当該施設ほど遺伝性角膜疾患患者を有しているのは, 世界的に見ても数施設に限られている. しかも当該施設は, 既に格子状角膜変性症皿型の原因遺伝子解明(Am J Hum Genet.1998)や膠様滴状角膜変性症の原因遺伝子発見(Nat Genet.1999), 斑状角膜変性症の原因遺伝子発見(Nat Genet. 2000: ゲノムニュース Vol. 1 / No.1 2002. Feb p28-p29) など画期的な成果をあげ続けている.

達成できなかったこと, 予想外の困難, その理由

約50家系の角膜変性症の原因が不明のままである. 新しい候補遺伝子の検索が必要と思われる. 角膜疾患 の表現型を規定する SNP を同定できていない. エクソ ンのみならず, イントロン領域, プロモーター領域の解 析に時間がかかっている.

今後の課題

遺伝性角膜疾患の重傷度を規定する SNP を発見すれば、視力予後や、治療への反応を予測することが可能になる。また、角膜疾患の遺伝子治療を行うためには、角膜で効率よく発現するケラトエピセリン遺伝子のプロモーター領域を解析し、角膜特異的発現を制御するプロモーターの開発が必要と考えられる。

成果公表リスト

1.111091545

H Watanabe, Y Hashida, K Tsujikawa, M Tsujikawa, N Maeda, Y Inoue, S Yamamoto, Y Tano.: Two patterns of opacity in corneal dystrophy caused by the homozygous BIG-H3 R124H mutation. Am J Ophthalmol 132, 211-216, 2001.

2. 111091600

T Inoue, H Watanabe, S Yamamoto, Y Inoue, M Okada, Y Hori, N Maeda, Y Inoue, K Hayashi, Y Shimomura, Y Tano.: Different recurrence patterns after phototherapeutic keratectomy in the corneal dystrophy resulting from homozygous and heterozygous R124H BIG-H3 mutation. Am J Ophthalmol 132, 255-257, 2001.